

Midpoint Formula

Name _____

Score _____

Example : Find the midpoint of a line segment with the endpoints
$$\left(-3, -\frac{2}{3}\right)$$
 and $\left(-1, -\frac{4}{3}\right)$.
Midpoint = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $x_1 = -3$; $x_2 = -1$; $y_1 = -\frac{2}{3}$; $y_2 = -\frac{4}{3}$
 $= \left(-\frac{3-1}{2}, -\frac{2}{3} - \frac{4}{3}\right)$
 $= (-2, -1)$
Find the midpoint of the line segments from the given endpoints.
1) (-3, -10) and (4.6, -2)
2) $\left(-\frac{2}{3}, -\frac{5}{2}\right)$ and $\left(-\frac{1}{3}, \frac{7}{2}\right)$
3) $\left(-3, \frac{4}{5}\right)$ and $\left(3, -\frac{4}{5}\right)$
4) (2.5, 1.6) and (3.5, 8.4)
5) (0.8, -6.8) and (2, -5)
6) (5, 2) and $\left(-11, -\frac{1}{2}\right)$

Midpoint Formula

Name _____

Score _____

Answer key

MP:14

Example : Find the midpoint of a line segment with the endpoints
$$\left(-3, -\frac{2}{3}\right)$$
 and $\left(-1, -\frac{4}{3}\right)$.
Midpoint = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $x_1 = -3$; $x_2 = -1$; $y_1 = -\frac{2}{3}$; $y_2 = -\frac{4}{3}$
 $= \left(\frac{-3 - 1}{2}, -\frac{2}{3}, -\frac{4}{3}\right)$
 $= (-2, -1)$
Find the midpoint of the line segments from the given endpoints.
1) (-3, -10) and (4.6, -2)
(0.8, -6)
(0.8, -6)
(1.4, -5.9)
(1.4, -5.9)
(x_1 = -3; x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
 $x_1 = -3; x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}$
 $(x_1 = -\frac{2}{3}, -\frac{2}{3})$
 $(x_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}$
(1.4, -5.9)
(x_1 = -\frac{2}{3}, -\frac{2}{3})
(x_1 = -3; -\frac{2}{3})
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_1 = -3; -\frac{2}{3})
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}
(x_2 = -1; y_1 = -\frac{2}{3}; y_2 = -\frac{4}{3}; y_2 = -\frac